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Recap from Last Time



  

What is First-Order Logic?
● First-order logic is a logical system for 

reasoning about properties of objects.
● Augments the logical connectives from 

propositional logic with
● predicates that describe properties of 

objects,
● functions that map objects to one another, 

and
● quantifiers that allow us to reason about 

many objects at once.



  

∃ is the existential quantifier 
and says “there is a choice of 
b where the following is true.

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))



  

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2))) 

 ∀ is the universal quantifier 
and says “for any choice of n, 

the following is true.”



  

“Some P is a Q”
translates as

∃x. (P(x) ∧ Q(x))



  

Useful Intuition: 
  

Existentially-quantified statements are 
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must 
have property P on top of 

property Q.



  

“All P's are Q's”
translates as

∀x. (P(x) → Q(x))



  

Useful Intuition:
 

Universally-quantified statements are true 
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it 
must have property P but 
not have property Q.



  

New Stuff!



  

The Aristotelian Forms

“All As are Bs”
 

∀x. (A(x) → B(x))
“Some As are Bs”

 

∃x. (A(x) ∧ B(x))

“No As are Bs”
 

∀x. (A(x) → ¬B(x))
“Some As aren’t Bs”

 

∃x. (A(x) ∧ ¬B(x))

It is worth committing these patterns to 
memory. We’ll be using them throughout 
the day and they form the backbone of 

many first-order logic translations.



  

The Art of Translation



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person 
loves someone else.”

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∀p. (Person(p) → 
∃q. (Person(q) ∧ p ≠ q ∧

Loves(p, q)
) 

)



  

Using the predicates

   - Person(p), which states that p is a person, and
   - Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a 
person that everyone else loves.”

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

∃p. (Person(p) ∧ 
∀q. (Person(q) ∧ p ≠ q →

Loves(q, p)
)

)



  

Quantifier Ordering



  

    ∃q. (Person(q) ∧ p ≠ q ∧
∀p. (Person(p) →

        Loves(p, q)
    )
)

Combining Quantifiers
● Most interesting statements in first-order 

logic require a combination of 
quantifiers.

“Every person loves someone else”

For every person…

… there is another person …

… they love

∀p. (Person(p) →

        Loves(p, q)
    )
)

    ∃q. (Person(q) ∧ p ≠ q ∧ 



  

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)
    )
)

Combining Quantifiers
● Most interesting statements in first-order 

logic require a combination of 
quantifiers.

“There is someone everyone else loves.”

There is a person…

… that everyone else …

… loves.

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)

)
    )



  

    ∀q. (Person(q) ∧ p ≠ q → 
∃p. (Person(p) ∧

        Loves(q, p)

        Loves(p, q)
    ∃q. (Person(q) ∧ p ≠ q ∧ 
∀p. (Person(p) →

For Comparison

)

For every person…

… there is another person …

… they love

    )

    )
)

There is a person…

… that everyone else …

… loves.



  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● Pretend for the moment that our world consists 
purely of natural numbers, so the variables m 
and n refer specifically to natural numbers.

● One of these statements is true. The other is 
false.

● Which is which?
● Why?

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● This says
for every natural number m,

there’s a larger natural number n.
● This is true: given any m ∈ ℕ, we can choose n 

to be m + 1.
● Notice that we can pick n based on m, and we 

don’t have to pick the same n each time.



  

Quantifier Ordering
● Consider these two first-order formulas:

∀m. ∃n. m < n.
∃n. ∀m. m < n.

● This says
there is a natural number n

that’s larger than every natural number m
● This is false: no natural number is bigger than 

every natural number.
● Because ∃n comes first, we have to make a 

single choice of n that works regardless of 
what we choose for m.



  

Quantifier Ordering
● The statement

 ∀x. ∃y. P(x, y)  
means “for any choice of x, there's some 
choice of y where P(x, y) is true.”

● The choice of y can be different every 
time and can depend on x.



  

Quantifier Ordering
● The statement

 ∃x. ∀y. P(x, y)  
means “there is some x where for any 
choice of y, we get that P(x, y) is true.”

● Since the inner part has to work for any 
choice of y, this places a lot of 
constraints on what x can be.



  

Order matters when mixing existential 
and universal quantifiers!



  

Time-Out for Announcements!



  

Problem Set Two
● Problem Set One was due today at 1:00PM.

● You can extend the deadline to 1:00PM Saturday using one of your 
late days. As usual, no late submissions will be accepted beyond 
1:00PM Saturday without prior approval.

● Problem Set Two goes out today. It’s due next Friday at 
1:00PM.
● Explore first-order logic!
● Expand your proofwriting toolkit!

● We have some online readings for this problem set.
● Check out the Guide to Logic Translations for more on how to 

convert from English to FOL.
● Check out the Guide to Negations for information about how to 

negate formulas.
● Check out the First-Order Translation Checklist for details on 

how to check your work.



  

Reminder: Stanford Honor Code
● As a reminder on course policies:

● ChatGPT and other generative AI tools are off-limits 
for graded work.

● You can discuss high-level ideas with other students, 
but can only share concrete solutions with your 
problem set partner.

● If you submitted something you shouldn’t have, 
keep an eye out for the Regret Clause Form 
that will go out this weekend.

● We take the Honor Code seriously. It 
promotes learning and basic fairness.



  

A Music Recommendation



  

Back to CS103!



  

Mechanics: Negating Statements



  

An Extremely Important Table

For all objects x,
P(x) is true. ∃x. ¬P(x)

When is this true? When is this false?

There is an x where
P(x) is true. ∀x. ¬P(x)

For all objects x,
P(x) is false. ∃x. P(x)

There is an x where
P(x) is false. ∀x. P(x)

∀x. P(x)
∃x. P(x)

∀x. ¬P(x)

∃x. ¬P(x)



  

Negating First-Order Statements
● Use the equivalences

¬∀x. A   is equivalent to   ∃x. ¬A
¬∃x. A   is equivalent to   ∀x. ¬A

to negate quantifiers.
● Mechanically:

● Push the negation across the quantifier.
● Change the quantifier from ∀ to ∃ or vice-versa.

● Use techniques from propositional logic to 
negate connectives.



  

Taking a Negation

∀x. ∃y. Loves(x, y)
(“Everyone loves someone.”)

¬∀x. ∃y. Loves(x, y)
∃x. ¬∃y. Loves(x, y)
∃x. ∀y. ¬Loves(x, y)

(“There's someone who doesn't love anyone.”)



  

Two Useful Equivalences
● The following equivalences are useful when 

negating statements in first-order logic:
¬(p ∧ q)     is equivalent to     p → ¬q
¬(p → q)     is equivalent to     p ∧ ¬q

● These identities are useful when negating 
statements involving quantifiers.
● ∧ is used in existentially-quantified statements.
● → is used in universally-quantified statements.

● When pushing negations across quantifiers, we 
strongly recommend using the above 
equivalences to keep → with ∀ and ∧ with ∃.



  

Negating Quantifiers
● What is the negation of the following statement, which 

says “there is a cute puppy”?
∃x. (Puppy(x) ∧ Cute(x))

● We can obtain it as follows:
¬∃x. (Puppy(x) ∧ Cute(x))
∀x. ¬(Puppy(x) ∧ Cute(x))
∀x. (Puppy(x) → ¬Cute(x))

● This says “no puppy is cute.”
● Do you see why this is the negation of the original 

statement from both an intuitive and formal 
perspective?



  

∃S. (Set(S) ∧ ∀x. x ∉ S)
(“There is a set with no elements.”)

¬∃S. (Set(S) ∧ ∀x. x ∉ S)
∀S. ¬(Set(S) ∧ ∀x. ¬x ∉ S)
∀S. (Set(S) → ¬∀x. x ∉ S)

∀S. (Set(S) → ∃x. ¬(x ∉ S))
∀S. (Set(S) → ∃x. x ∈ S)

(“Every set contains at least one element.”)



  

Restricted Quantifiers



  

Quantifying Over Sets
● The notation

∀x ∈ S. P(x)
means “for any element x of set S, P(x) 
holds.” (It’s vacuously true if S is empty.)

● The notation
∃x ∈ S. P(x)

means “there is an element x of set S 
where P(x) holds.” (It’s false if S is empty.)



  

Quantifying Over Sets
● The syntax

∀x ∈ S. P(x)
∃x ∈ S. P(x)

is allowed for quantifying over sets.
● In CS103, feel free to use these restricted quantifiers, but 

please do not use variants of this syntax.
● For example, don't do things like this:

⚠                  ∀x with P(x). Q(x)                     ⚠
⚠        ∀y such that P(y) ∧ Q(y). R(y).           ⚠
⚠                       ∃P(x). Q(x)                           ⚠

   



  

Expressing Uniqueness



  

Using the predicate

   - WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means “there is only 
one way to find out.”



  

∃w. (WayToFindOut(w) ∧
∀x. (x ≠ w → ¬WayToFindOut(x))

)



  

∃w. (WayToFindOut(w) ∧
∀x. (WayToFindOut(x) → x = w)

)



  

Expressing Uniqueness
● To express the idea that there is exactly one object 

with some property, we write that
● there exists at least one object with that property, and that
● there are no other objects with that property.

● You sometimes see a special “uniqueness quantifier” 
used to express this:

∃!x. P(x)  
● For the purposes of CS103, please do not use this 

quantifier. We want to give you more practice using 
the regular ∀ and ∃ quantifiers.



  

Next Time
● Functions

● How do we model transformations and 
pairings?

● First-Order Definitions
● Where does first-order logic come into all of 

this?
● Proofs with Definitions

● How does first-order logic interact with proofs?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

