Lecture 05:
First-Order Logic

Part 2 of 2



Recap from Last Time



What is First-Order Logic?

» First-order logic is a logical system for
reasoning about properties of objects.

 Augments the logical connectives from
propositional logic with

 predicates that describe properties of
objects,

* functions that map objects to one another,
and

 quantifiers that allow us to reason about
many objects at once.



Some bear is curious.

db. (Bear(b) N Curious(b))

—

3 is the existential quantifier

and says ‘fhere is a choice of
b where the tollowing is true.,




“For any natural number n,
n is even if and only if n® is even”

Vn. (n € N - (Even(n) < Even(n?)))

‘\

V is The universal quantifier

and says ‘tor any choice ot n,
the tollowing is frue,*




“Some P is a Q”

translates as

3x. (P(x) A Q(x))



Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

3x. (P(x) A Q(Xx))

It x is an example, it must
have property P on top of
property Q.




“All P's are Q's”

translates as

Vx. (P(x) - Q(x))



Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

Vx. (P(x) - Q(x))

It x is a counterexample, it
musT have property P bul
not have properTy Q.




New Stuff!



The Aristotelian Forms

“All As are Bs” “Some As are Bs”
Vx. (A(x) » B(x)) Ix. (A(xX) A B(x))

“No As are Bs” “Some As aren’t Bs”
Vx. (A(x) » "B(X)) Ix. (A(X) A = B(x))

1T is worth committing these patterns to
memory, We’ll be using Them throughout

the day and they torm the backbone of
many first—order logic franslations,




The Art of Translation



Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “every person
loves someone else.”

Answer at

https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Vp. (Person(p) —
1q. (Person(g) AN p # q A
Loves(p, q)
)
)



Using the predicates

- Person(p), which states that p is a person, and
- Loves(x, y), which states that x loves y,

write a sentence in first-order logic that means “there is a
person that everyone else loves.”

Answer at

https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

dp. (Person(p) A
Vq. (Person(q) AN p # q —
Loves(q, p)
)
)



Quantifier Ordering



Combining Quantifiers

 Most interesting statements in first-order
logic require a combination of
quantifiers.

“Every person loves someone else”

For every person.. Vp. (Person(p) -

. there is another person . ( A

. they love Loves(p, q)

)
)



Combining Quantifiers

 Most interesting statements in first-order
logic require a combination of
quantifiers.

“There is someone everyone else loves.”

Theve is a person.. Elp. (PQT'SOH(D) A

. thal everyone else . ( -

. loves, LOVQS(C[, p)
)
)



For Comparison

For every person.. Vp. (Person(p) —
. there is another person .. dq. (Person(q) A p # q A
. They love Loves(p, q)
)
)
There 1s a person.. 1p. (Per'son(p) A
. that everyone else . Vq. (P@T’SOH(C[) ANp#qg-—
. loves, Loves(q, p)
)

)



Quantifier Ordering

Consider these two first-order formulas:
Vm. dn. m < n.
dn. Vm. m < n.

Pretend for the moment that our world consists
purely of natural numbers, so the variables m
and n refer specifically to natural numbers.

One of these statements is true. The other is
false.

Which is which? Answer at

Why? https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Quantifier Ordering

Consider these two first-order formulas:

Vm. dn. m < n.

This says

for every natural number m,
there’s a larger natural number n.

This is true: given any m € N, we can choose n
tobem + 1.

Notice that we can pick n based on m, and we
don’t have to pick the same n each time.



Quantifier Ordering

Consider these two first-order formulas:

dn. Vm. m < n.
This says

there is a natural number n
that’s larger than every natural number m

This is false: no natural number is bigger than
every natural number.

Because dn comes first, we have to make a
single choice of n that works regardless of
what we choose for m.



Quantifier Ordering

e The statement
Vx. dy. P(x, y)

means “for any choice of x, there's some
choice of y where P(x, y) is true.”

 The choice of y can be different every
time and can depend on x.



Quantifier Ordering

e The statement
dx. Vy. P(x, V)

means “there is some x where for any
choice of y, we get that P(x, y) is true.”

* Since the inner part has to work for any
choice of y, this places a lot of
constraints on what x can be.



Order matters when mixing existential
and universal quantifiers!



Time-Out for Announcements!



Problem Set Two

* Problem Set One was due today at 1:00PM.

* You can extend the deadline to 1:00PM Saturday using one of your
late days. As usual, no late submissions will be accepted beyond
1:00PM Saturday without prior approval.

 Problem Set Two goes out today. It’s due next Friday at
1:00PM.

« Explore first-order logic!
« Expand your proofwriting toolkit!
« We have some online readings for this problem set.

e Check out the Guide to Logic Translations for more on how to
convert from English to FOL.

 Check out the Guide to Negations for information about how to
negate formulas.

e Check out the First-Order Translation Checklist for details on
how to check your work.



Reminder: Stanford Honor Code

 As a reminder on course policies:

 ChatGPT and other generative Al tools are off-limits
for graded work.

* You can discuss high-level ideas with other students,
but can only share concrete solutions with your
problem set partner.

 If you submitted something you shouldn’t have,
keep an eye out for the Regret Clause Form
that will go out this weekend.

 We take the Honor Code seriously. It
promotes learning and basic fairness.



A Music Recommendation

TYLKINGHEYDS




Back to CS103!



Mechanics: Negating Statements



An Extremely Important Table

When is this true? When is this false?

VX. P(X) | “ptoistme, - | 3X. 7P(X)
X, PO | r e | VX 7 P(X)
Vx. = P(x) Fozl;(il)1 o balae. 3x. P(x)

Ix. =PO)| "pwstise. | X P(X)




Negating First-Order Statements

« Use the equivalences
—VXx. A is equivalent to dx. —A
—dx. A is equivalentto VXx. —A
to negate quantifiers.
 Mechanically:

* Push the negation across the quantifier.
 Change the quantifier from V to d or vice-versa.

* Use techniques from propositional logic to
negate connectives.



Taking a Negation

Vx. dy. Loves(x, y)

(“Everyone loves someone.”)

=Vx. dy. Loves(x, y)
dx. —3dy. Loves(x, y)
ix. Vy. =Loves(x, y)

(“There's someone who doesn't love anyone.”)



Two Usetul Equivalences

* The following equivalences are useful when
negating statements in first-order logic:

-(p A q@) isequivalentto p- —q
-(p—-q) isequivalentto p A —q

 These identities are useful when negating
statements involving quantifiers.

* A is used in existentially-quantified statements.
 — is used in universally-quantified statements.

 When pushing negations across quantifiers, we
strongly recommend using the above
equivalences to keep — with V and A with 3.



Negating Quantifiers

 What is the negation of the following statement, which
says “there is a cute puppy”?

dx. (Puppy(x) A Cute(x))
 We can obtain it as follows:

—dx. (Puppy(x) A Cute(x))

Vx. = (Puppy(x) A Cute(x))

Vx. (Puppy(x) = —Cute(x))
* This says “no puppy is cute.”

* Do you see why this is the negation of the original
statement from both an intuitive and formal
perspective?



1S. (Set(S) A Vx. x € S)

(“There is a set with no elements.”)

—3S. (Set(S) A Vx. x € S)
VS. =(Set(S) A Vx. - x ¢ S)
VS. (Set(S) - =Vx. x € S)
VS. (Set(S) - Ix. ~(x € S))
VS. (Set(S) —» Ix. x € S)

(“Every set contains at least one element.”)



Restricted Quantifiers



Quantifying Over Sets

* The notation
Vx € S. P(x)

means “for any element x of set S, P(x)
holds.” (It’s vacuously true it S is empty.)

e The notation
Idx € S. P(x)

means “there is an element x of set S
where P(x) holds.” (It's false if S is empty.)



Quantifying Over Sets

* The syntax
Vx € S. P(x)
Ix € S. P(x)
is allowed for quantifying over sets.

 In CS103, feel free to use these restricted quantifiers, but
please do not use variants of this syntax.

 For example, don't do things like this:
Vx with P(x). Q(x)
Yy such that P(y) A Q(y). R(y).
JP(x). Q(x)



Expressing Uniqueness



Using the predicate

- WayToFindOut(w), which states that w is a way to find out,

write a sentence in first-order logic that means “there is only
one way to find out.”



dw. (WayToFindOut(w) A
Vx. (x # w - mWayToFindOut(x))

)



dw. (WayToFindOut(w) A
Vx. (WayToFindOut(x) =» x = w)
)



Expressing Uniqueness

* To express the idea that there is exactly one object
with some property, we write that

* there exists at least one object with that property, and that
* there are no other objects with that property.

* You sometimes see a special “uniqueness quantifier”
used to express this:

J!x. P(x)

* For the purposes of CS103, please do not use this
quantifier. We want to give you more practice using
the regular V and 34 quantifiers.



Next Time

e Functions

 How do we model transformations and
pairings?

» First-Order Definitions

 Where does first-order logic come into all of
this?

 Proofs with Definitions

« How does first-order logic interact with proofs?
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